Digital Discourse Transformation: Analysis of Neutral Discussion Escalation into SARA Debates on Indonesian Social Media Platforms

Authors

  • Bayu Ade Prabowo Sekolah Tinggi Ilmu Ekonomi Pariwsiata Indonesia Semarang
  • Tri Maryani Sekolah Tinggi Ilmu Ekonomi Pariwsiata Indonesia Semarang
  • Wida Mulyani Sekolah Tinggi Ilmu Ekonomi Pariwsiata Indonesia Semarang
  • Nicolas Kevin Sulityawardhana Sekolah Tinggi Ilmu Ekonomi Pariwsiata Indonesia Semarang

DOI:

https://doi.org/10.56910/literacy.v4i2.2464

Keywords:

digital discourse transformation, SARA escalation, Indonesian social media, predictive modeling, algorithmic amplification

Abstract

The digital era has fundamentally transformed public communication in Indonesia, presenting critical challenges through the escalation of neutral discussions into debates based on Ethnicity, Religion, Race, and Intergroup Relations (SARA) on social media platforms. This research aims to identify linguistic and interactional patterns that serve as markers of discourse transformation, analyze the role of platform algorithms in accelerating escalation, compare escalation characteristics across X, Threads, Instagram, and TikTok platforms, and develop predictive models for early detection of identity-based discourse escalation. The study employs a mixed-methods design with Digital Critical Discourse Analysis framework, integrating Social Network Analysis and controlled digital experiments. Data collection involved 1,247 discussion threads across four platforms and 28 in-depth interviews using stratified purposive sampling and maximum variation sampling. Analysis utilized statistical testing, machine learning pipeline with BERT-based models, and thematic analysis with inter-rater reliability ≥0.80. Results revealed four distinct transformation phases characterized by decreasing lexical diversity (TTR 0.67 to 0.29), increasing negative sentiment (0.12 to -0.73), and network fragmentation (density 0.34 to 0.12). The developed Transformative Discourse Model achieved 89.7% accuracy in predicting escalation events with 4-14 hours early detection capability. Platform-specific analysis showed TikTok as fastest escalation (14.2 hours) and Threads as slowest (31.8 hours). The research contributes Indonesian Digital Discourse Corpus, cross-platform comparative framework, and evidence-based intervention protocols, supporting digital literacy strengthening and radicalism prevention in Indonesian cyberspace.

References

[1] E. Pariser, The Filter Bubble: What the Internet Is Hiding from You. Penguin Press, 2011.

[2] F. Huszár, S. I. Ktena, C. O’Brien, L. Belli, A. Schlaikjer, dan M. Hardt, “Algorithmic amplification of politics on Twitter,” Proc. Natl. Acad. Sci., vol. 119, no. 1, Jan 2022, doi: 10.1073/pnas.2025334119.

[3] T. Gillespie, Custodians of the Internet: Platforms, Content Moderation, and the Hidden Decisions That Shape Social Media. Yale University Press, 2019. doi: 10.12987/9780300235029.

[4] danah m. Boyd dan N. B. Ellison, “Social Network Sites: Definition, History, and Scholarship,” J. Comput. Commun., vol. 13, no. 1, hal. 210–230, Okt 2007, doi: 10.1111/j.1083-6101.2007.00393.x.

[5] Monash University Data & Democracy Research Hub, “Rising Levels of Hate Speech on Social Media During the 2024 Election Campaign,” Monash University. Diakses: 10 Mei 2025. [Daring]. Tersedia pada: https://www.monash.edu/indonesia/news/rising-levels-of-hate-speech-on-social-media-during-the-2024-election-campaign

[6] Suhaeri dan K. Aditya, “Polarisasi Opini Di Media Sosial Menjelang Pemilu Tahun 2024 Di Indonesia,” J. Kebangs. Ri, vol. 1, no. 1, 2023.

[7] I. Syahputra, W. Fajar Riyanto, F. Dian Pratiwi, dan R. Lusri Virga, “Escaping social media: the end of netizen’s political polarization between Islamists and nationalists in Indonesia?,” Media Asia, vol. 51, no. 1, hal. 62–80, 2024, doi: 10.1080/01296612.2023.2246726.

[8] T. Davidson, D. Bhattacharya, dan I. Weber, “Racial Bias in Hate Speech and Abusive Language Detection Datasets,” in Proceedings of the Third Workshop on Abusive Language Online, Stroudsburg, PA, USA: Association for Computational Linguistics, 2019, hal. 25–35. doi: 10.18653/v1/W19-3504.

[9] Z. Waseem, T. Davidson, D. Warmsley, dan I. Weber, “Understanding Abuse: A Typology of Abusive Language Detection Subtasks,” in Proceedings of the First Workshop on Abusive Language Online, Stroudsburg, PA, USA: Association for Computational Linguistics, 2017, hal. 78–84. doi: 10.18653/v1/W17-3012.

[10] S. Kumar, W. L. Hamilton, J. Leskovec, dan D. Jurafsky, “Community Interaction and Conflict on the Web,” in Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18, New York, New York, USA: ACM Press, 2018, hal. 933–943. doi: 10.1145/3178876.3186141.

[11] I. Alfina, R. Mulia, M. I. Fanany, dan Y. Ekanata, “Hate speech detection in the Indonesian language: A dataset and preliminary study,” in 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), IEEE, Okt 2017, hal. 233–238. doi: 10.1109/ICACSIS.2017.8355039.

[12] P. Fortuna dan S. Nunes, “A Survey on Automatic Detection of Hate Speech in Text,” ACM Comput. Surv., vol. 51, no. 4, hal. 1–30, Jul 2019, doi: 10.1145/3232676.

[13] M. KhosraviNik dan J. W. Unger, “Critical discourse studies and social media: power, resistance and critique in changing media ecologies,” in Methods of critical discourse studies, R. Wodak dan M. Meyer, Ed., London: SAGE, 2016.

[14] S. Wasserman dan K. Faust, Social Network Analysis. Cambridge University Press, 1994. doi: 10.1017/CBO9780511815478.

[15] Z. Tufekci, Twitter and Tear Gas: The Power and Fragility of Networked Protest. Yale University Press, 2017.

[16] N. Fairclough, Critical Discourse Analysis. Routledge, 2013. doi: 10.4324/9781315834368.

[17] K. Charmaz, Constructing grounded theory, 2 ed. London: SAGE Publications, 2014.

[18] M. Rachimoellah, P. H. Lubis, dan N. J. Utimadini, “Digital Activism and Political Change: Challenges of Social Media’s Impact on Political Development,” J. Middle East Islam. Stud., vol. 11, no. 2, hal. 55–72, Okt 2024, doi: 10.7454/meis.v11i2.177.

[19] R. A. Yanuartha dan L. K. Alfirdaus, “Analisis Wacana Akun Facebook Humor Politik Terkait Pilkada Dki Jakarta Tahun 2017,” Cakrawala J. Penelit. Sos., hal. 25–50, 2020.

[20] H. Sazali, U. A. Rahim, R. Farady Marta, dan A. R. Gatcho, “Mapping Hate Speech about Religion and State on Social Media in Indonesia,” Commun. J. Ilmu Komun., vol. 6, no. July, hal. 189–208, 2022, doi: 10.15575/cjik.v6i2.

[21] M. Lim, “Many Clicks but Little Sticks: Social Media Activism in Indonesia,” J. Contemp. Asia, vol. 43, no. 4, hal. 636–657, Nov 2013, doi: 10.1080/00472336.2013.769386.

[22] J. W. Creswell dan V. L. Plano Clark, Designing and Conducting Mixed Methods Research, Third. SAGE Publications Inc, 2017.

[23] M. Q. Patton, Qualitative Research & Evaluation Methods: Integrating Theory and Practice (4th ed.). SAGE Publications, 2015.

[24] S. P. Borgatti, M. G. Everett, J. C. Johnson, dan F. Agneessens, Analyzing Social Networks, Third. SAGE Publications Ltd, 2024.

[25] aline shakti Franzke, A. Bechmann, M. Zimmer, dan C. M. Ess, “Internet Research : Ethical Guidelines 3.0,” 2020. [Daring]. Tersedia pada: https://aoir.org/reports/ethics3.pdf

[26] T. Caselli, V. Basile, J. Mitrović, dan M. Granitzer, “HateBERT: Retraining BERT for Abusive Language Detection in English,” in Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021), Stroudsburg, PA, USA: Association for Computational Linguistics, 2021, hal. 17–25. doi: 10.18653/v1/2021.woah-1.3.

Downloads

Published

2025-06-10

How to Cite

Bayu Ade Prabowo, Tri Maryani, Wida Mulyani, & Nicolas Kevin Sulityawardhana. (2025). Digital Discourse Transformation: Analysis of Neutral Discussion Escalation into SARA Debates on Indonesian Social Media Platforms. LITERACY : International Scientific Journals of Social, Education, Humanities, 4(2), 289–301. https://doi.org/10.56910/literacy.v4i2.2464

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.